Copied to
clipboard

G = C15×C22.D4order 480 = 25·3·5

Direct product of C15 and C22.D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C15×C22.D4, C4⋊C44C30, C2.7(D4×C30), C22⋊C44C30, (C22×C4)⋊5C30, (C22×C60)⋊9C2, (C22×C20)⋊9C6, (C2×D4).4C30, C10.70(C6×D4), C6.70(D4×C10), (C22×C12)⋊5C10, (D4×C30).25C2, (C6×D4).11C10, (D4×C10).11C6, (C2×C30).130D4, C30.453(C2×D4), C22.4(D4×C15), C23.12(C2×C30), C30.279(C4○D4), (C2×C60).437C22, (C2×C30).458C23, C22.13(C22×C30), (C22×C30).133C22, (C5×C4⋊C4)⋊13C6, (C15×C4⋊C4)⋊31C2, (C3×C4⋊C4)⋊13C10, (C2×C4).5(C2×C30), C2.6(C15×C4○D4), C6.43(C5×C4○D4), (C2×C6).23(C5×D4), (C5×C22⋊C4)⋊12C6, (C2×C20).67(C2×C6), C10.43(C3×C4○D4), (C2×C10).24(C3×D4), (C3×C22⋊C4)⋊12C10, (C15×C22⋊C4)⋊28C2, (C2×C12).81(C2×C10), (C22×C6).29(C2×C10), (C22×C10).37(C2×C6), (C2×C10).78(C22×C6), (C2×C6).78(C22×C10), SmallGroup(480,928)

Series: Derived Chief Lower central Upper central

C1C22 — C15×C22.D4
C1C2C22C2×C10C2×C30C22×C30D4×C30 — C15×C22.D4
C1C22 — C15×C22.D4
C1C2×C30 — C15×C22.D4

Generators and relations for C15×C22.D4
 G = < a,b,c,d,e | a15=b2=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe=bc=cb, cd=dc, ce=ec, ede=cd-1 >

Subgroups: 232 in 156 conjugacy classes, 88 normal (40 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C5, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, C23, C10, C10, C10, C12, C2×C6, C2×C6, C2×C6, C15, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C20, C2×C10, C2×C10, C2×C10, C2×C12, C2×C12, C2×C12, C3×D4, C22×C6, C30, C30, C30, C22.D4, C2×C20, C2×C20, C2×C20, C5×D4, C22×C10, C3×C22⋊C4, C3×C22⋊C4, C3×C4⋊C4, C22×C12, C6×D4, C60, C2×C30, C2×C30, C2×C30, C5×C22⋊C4, C5×C22⋊C4, C5×C4⋊C4, C22×C20, D4×C10, C3×C22.D4, C2×C60, C2×C60, C2×C60, D4×C15, C22×C30, C5×C22.D4, C15×C22⋊C4, C15×C22⋊C4, C15×C4⋊C4, C22×C60, D4×C30, C15×C22.D4
Quotients: C1, C2, C3, C22, C5, C6, D4, C23, C10, C2×C6, C15, C2×D4, C4○D4, C2×C10, C3×D4, C22×C6, C30, C22.D4, C5×D4, C22×C10, C6×D4, C3×C4○D4, C2×C30, D4×C10, C5×C4○D4, C3×C22.D4, D4×C15, C22×C30, C5×C22.D4, D4×C30, C15×C4○D4, C15×C22.D4

Smallest permutation representation of C15×C22.D4
On 240 points
Generators in S240
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160 161 162 163 164 165)(166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195)(196 197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224 225)(226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 178)(2 179)(3 180)(4 166)(5 167)(6 168)(7 169)(8 170)(9 171)(10 172)(11 173)(12 174)(13 175)(14 176)(15 177)(16 36)(17 37)(18 38)(19 39)(20 40)(21 41)(22 42)(23 43)(24 44)(25 45)(26 31)(27 32)(28 33)(29 34)(30 35)(46 193)(47 194)(48 195)(49 181)(50 182)(51 183)(52 184)(53 185)(54 186)(55 187)(56 188)(57 189)(58 190)(59 191)(60 192)(61 240)(62 226)(63 227)(64 228)(65 229)(66 230)(67 231)(68 232)(69 233)(70 234)(71 235)(72 236)(73 237)(74 238)(75 239)(76 153)(77 154)(78 155)(79 156)(80 157)(81 158)(82 159)(83 160)(84 161)(85 162)(86 163)(87 164)(88 165)(89 151)(90 152)(91 127)(92 128)(93 129)(94 130)(95 131)(96 132)(97 133)(98 134)(99 135)(100 121)(101 122)(102 123)(103 124)(104 125)(105 126)(106 223)(107 224)(108 225)(109 211)(110 212)(111 213)(112 214)(113 215)(114 216)(115 217)(116 218)(117 219)(118 220)(119 221)(120 222)(136 202)(137 203)(138 204)(139 205)(140 206)(141 207)(142 208)(143 209)(144 210)(145 196)(146 197)(147 198)(148 199)(149 200)(150 201)
(1 134)(2 135)(3 121)(4 122)(5 123)(6 124)(7 125)(8 126)(9 127)(10 128)(11 129)(12 130)(13 131)(14 132)(15 133)(16 141)(17 142)(18 143)(19 144)(20 145)(21 146)(22 147)(23 148)(24 149)(25 150)(26 136)(27 137)(28 138)(29 139)(30 140)(31 202)(32 203)(33 204)(34 205)(35 206)(36 207)(37 208)(38 209)(39 210)(40 196)(41 197)(42 198)(43 199)(44 200)(45 201)(46 164)(47 165)(48 151)(49 152)(50 153)(51 154)(52 155)(53 156)(54 157)(55 158)(56 159)(57 160)(58 161)(59 162)(60 163)(61 216)(62 217)(63 218)(64 219)(65 220)(66 221)(67 222)(68 223)(69 224)(70 225)(71 211)(72 212)(73 213)(74 214)(75 215)(76 182)(77 183)(78 184)(79 185)(80 186)(81 187)(82 188)(83 189)(84 190)(85 191)(86 192)(87 193)(88 194)(89 195)(90 181)(91 171)(92 172)(93 173)(94 174)(95 175)(96 176)(97 177)(98 178)(99 179)(100 180)(101 166)(102 167)(103 168)(104 169)(105 170)(106 232)(107 233)(108 234)(109 235)(110 236)(111 237)(112 238)(113 239)(114 240)(115 226)(116 227)(117 228)(118 229)(119 230)(120 231)
(1 200 98 149)(2 201 99 150)(3 202 100 136)(4 203 101 137)(5 204 102 138)(6 205 103 139)(7 206 104 140)(8 207 105 141)(9 208 91 142)(10 209 92 143)(11 210 93 144)(12 196 94 145)(13 197 95 146)(14 198 96 147)(15 199 97 148)(16 126 36 170)(17 127 37 171)(18 128 38 172)(19 129 39 173)(20 130 40 174)(21 131 41 175)(22 132 42 176)(23 133 43 177)(24 134 44 178)(25 135 45 179)(26 121 31 180)(27 122 32 166)(28 123 33 167)(29 124 34 168)(30 125 35 169)(46 215 87 113)(47 216 88 114)(48 217 89 115)(49 218 90 116)(50 219 76 117)(51 220 77 118)(52 221 78 119)(53 222 79 120)(54 223 80 106)(55 224 81 107)(56 225 82 108)(57 211 83 109)(58 212 84 110)(59 213 85 111)(60 214 86 112)(61 194 240 165)(62 195 226 151)(63 181 227 152)(64 182 228 153)(65 183 229 154)(66 184 230 155)(67 185 231 156)(68 186 232 157)(69 187 233 158)(70 188 234 159)(71 189 235 160)(72 190 236 161)(73 191 237 162)(74 192 238 163)(75 193 239 164)
(1 239)(2 240)(3 226)(4 227)(5 228)(6 229)(7 230)(8 231)(9 232)(10 233)(11 234)(12 235)(13 236)(14 237)(15 238)(16 156)(17 157)(18 158)(19 159)(20 160)(21 161)(22 162)(23 163)(24 164)(25 165)(26 151)(27 152)(28 153)(29 154)(30 155)(31 195)(32 181)(33 182)(34 183)(35 184)(36 185)(37 186)(38 187)(39 188)(40 189)(41 190)(42 191)(43 192)(44 193)(45 194)(46 149)(47 150)(48 136)(49 137)(50 138)(51 139)(52 140)(53 141)(54 142)(55 143)(56 144)(57 145)(58 146)(59 147)(60 148)(61 99)(62 100)(63 101)(64 102)(65 103)(66 104)(67 105)(68 91)(69 92)(70 93)(71 94)(72 95)(73 96)(74 97)(75 98)(76 204)(77 205)(78 206)(79 207)(80 208)(81 209)(82 210)(83 196)(84 197)(85 198)(86 199)(87 200)(88 201)(89 202)(90 203)(106 127)(107 128)(108 129)(109 130)(110 131)(111 132)(112 133)(113 134)(114 135)(115 121)(116 122)(117 123)(118 124)(119 125)(120 126)(166 218)(167 219)(168 220)(169 221)(170 222)(171 223)(172 224)(173 225)(174 211)(175 212)(176 213)(177 214)(178 215)(179 216)(180 217)

G:=sub<Sym(240)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165)(166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195)(196,197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225)(226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,178)(2,179)(3,180)(4,166)(5,167)(6,168)(7,169)(8,170)(9,171)(10,172)(11,173)(12,174)(13,175)(14,176)(15,177)(16,36)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,31)(27,32)(28,33)(29,34)(30,35)(46,193)(47,194)(48,195)(49,181)(50,182)(51,183)(52,184)(53,185)(54,186)(55,187)(56,188)(57,189)(58,190)(59,191)(60,192)(61,240)(62,226)(63,227)(64,228)(65,229)(66,230)(67,231)(68,232)(69,233)(70,234)(71,235)(72,236)(73,237)(74,238)(75,239)(76,153)(77,154)(78,155)(79,156)(80,157)(81,158)(82,159)(83,160)(84,161)(85,162)(86,163)(87,164)(88,165)(89,151)(90,152)(91,127)(92,128)(93,129)(94,130)(95,131)(96,132)(97,133)(98,134)(99,135)(100,121)(101,122)(102,123)(103,124)(104,125)(105,126)(106,223)(107,224)(108,225)(109,211)(110,212)(111,213)(112,214)(113,215)(114,216)(115,217)(116,218)(117,219)(118,220)(119,221)(120,222)(136,202)(137,203)(138,204)(139,205)(140,206)(141,207)(142,208)(143,209)(144,210)(145,196)(146,197)(147,198)(148,199)(149,200)(150,201), (1,134)(2,135)(3,121)(4,122)(5,123)(6,124)(7,125)(8,126)(9,127)(10,128)(11,129)(12,130)(13,131)(14,132)(15,133)(16,141)(17,142)(18,143)(19,144)(20,145)(21,146)(22,147)(23,148)(24,149)(25,150)(26,136)(27,137)(28,138)(29,139)(30,140)(31,202)(32,203)(33,204)(34,205)(35,206)(36,207)(37,208)(38,209)(39,210)(40,196)(41,197)(42,198)(43,199)(44,200)(45,201)(46,164)(47,165)(48,151)(49,152)(50,153)(51,154)(52,155)(53,156)(54,157)(55,158)(56,159)(57,160)(58,161)(59,162)(60,163)(61,216)(62,217)(63,218)(64,219)(65,220)(66,221)(67,222)(68,223)(69,224)(70,225)(71,211)(72,212)(73,213)(74,214)(75,215)(76,182)(77,183)(78,184)(79,185)(80,186)(81,187)(82,188)(83,189)(84,190)(85,191)(86,192)(87,193)(88,194)(89,195)(90,181)(91,171)(92,172)(93,173)(94,174)(95,175)(96,176)(97,177)(98,178)(99,179)(100,180)(101,166)(102,167)(103,168)(104,169)(105,170)(106,232)(107,233)(108,234)(109,235)(110,236)(111,237)(112,238)(113,239)(114,240)(115,226)(116,227)(117,228)(118,229)(119,230)(120,231), (1,200,98,149)(2,201,99,150)(3,202,100,136)(4,203,101,137)(5,204,102,138)(6,205,103,139)(7,206,104,140)(8,207,105,141)(9,208,91,142)(10,209,92,143)(11,210,93,144)(12,196,94,145)(13,197,95,146)(14,198,96,147)(15,199,97,148)(16,126,36,170)(17,127,37,171)(18,128,38,172)(19,129,39,173)(20,130,40,174)(21,131,41,175)(22,132,42,176)(23,133,43,177)(24,134,44,178)(25,135,45,179)(26,121,31,180)(27,122,32,166)(28,123,33,167)(29,124,34,168)(30,125,35,169)(46,215,87,113)(47,216,88,114)(48,217,89,115)(49,218,90,116)(50,219,76,117)(51,220,77,118)(52,221,78,119)(53,222,79,120)(54,223,80,106)(55,224,81,107)(56,225,82,108)(57,211,83,109)(58,212,84,110)(59,213,85,111)(60,214,86,112)(61,194,240,165)(62,195,226,151)(63,181,227,152)(64,182,228,153)(65,183,229,154)(66,184,230,155)(67,185,231,156)(68,186,232,157)(69,187,233,158)(70,188,234,159)(71,189,235,160)(72,190,236,161)(73,191,237,162)(74,192,238,163)(75,193,239,164), (1,239)(2,240)(3,226)(4,227)(5,228)(6,229)(7,230)(8,231)(9,232)(10,233)(11,234)(12,235)(13,236)(14,237)(15,238)(16,156)(17,157)(18,158)(19,159)(20,160)(21,161)(22,162)(23,163)(24,164)(25,165)(26,151)(27,152)(28,153)(29,154)(30,155)(31,195)(32,181)(33,182)(34,183)(35,184)(36,185)(37,186)(38,187)(39,188)(40,189)(41,190)(42,191)(43,192)(44,193)(45,194)(46,149)(47,150)(48,136)(49,137)(50,138)(51,139)(52,140)(53,141)(54,142)(55,143)(56,144)(57,145)(58,146)(59,147)(60,148)(61,99)(62,100)(63,101)(64,102)(65,103)(66,104)(67,105)(68,91)(69,92)(70,93)(71,94)(72,95)(73,96)(74,97)(75,98)(76,204)(77,205)(78,206)(79,207)(80,208)(81,209)(82,210)(83,196)(84,197)(85,198)(86,199)(87,200)(88,201)(89,202)(90,203)(106,127)(107,128)(108,129)(109,130)(110,131)(111,132)(112,133)(113,134)(114,135)(115,121)(116,122)(117,123)(118,124)(119,125)(120,126)(166,218)(167,219)(168,220)(169,221)(170,222)(171,223)(172,224)(173,225)(174,211)(175,212)(176,213)(177,214)(178,215)(179,216)(180,217)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165)(166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195)(196,197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225)(226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,178)(2,179)(3,180)(4,166)(5,167)(6,168)(7,169)(8,170)(9,171)(10,172)(11,173)(12,174)(13,175)(14,176)(15,177)(16,36)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,31)(27,32)(28,33)(29,34)(30,35)(46,193)(47,194)(48,195)(49,181)(50,182)(51,183)(52,184)(53,185)(54,186)(55,187)(56,188)(57,189)(58,190)(59,191)(60,192)(61,240)(62,226)(63,227)(64,228)(65,229)(66,230)(67,231)(68,232)(69,233)(70,234)(71,235)(72,236)(73,237)(74,238)(75,239)(76,153)(77,154)(78,155)(79,156)(80,157)(81,158)(82,159)(83,160)(84,161)(85,162)(86,163)(87,164)(88,165)(89,151)(90,152)(91,127)(92,128)(93,129)(94,130)(95,131)(96,132)(97,133)(98,134)(99,135)(100,121)(101,122)(102,123)(103,124)(104,125)(105,126)(106,223)(107,224)(108,225)(109,211)(110,212)(111,213)(112,214)(113,215)(114,216)(115,217)(116,218)(117,219)(118,220)(119,221)(120,222)(136,202)(137,203)(138,204)(139,205)(140,206)(141,207)(142,208)(143,209)(144,210)(145,196)(146,197)(147,198)(148,199)(149,200)(150,201), (1,134)(2,135)(3,121)(4,122)(5,123)(6,124)(7,125)(8,126)(9,127)(10,128)(11,129)(12,130)(13,131)(14,132)(15,133)(16,141)(17,142)(18,143)(19,144)(20,145)(21,146)(22,147)(23,148)(24,149)(25,150)(26,136)(27,137)(28,138)(29,139)(30,140)(31,202)(32,203)(33,204)(34,205)(35,206)(36,207)(37,208)(38,209)(39,210)(40,196)(41,197)(42,198)(43,199)(44,200)(45,201)(46,164)(47,165)(48,151)(49,152)(50,153)(51,154)(52,155)(53,156)(54,157)(55,158)(56,159)(57,160)(58,161)(59,162)(60,163)(61,216)(62,217)(63,218)(64,219)(65,220)(66,221)(67,222)(68,223)(69,224)(70,225)(71,211)(72,212)(73,213)(74,214)(75,215)(76,182)(77,183)(78,184)(79,185)(80,186)(81,187)(82,188)(83,189)(84,190)(85,191)(86,192)(87,193)(88,194)(89,195)(90,181)(91,171)(92,172)(93,173)(94,174)(95,175)(96,176)(97,177)(98,178)(99,179)(100,180)(101,166)(102,167)(103,168)(104,169)(105,170)(106,232)(107,233)(108,234)(109,235)(110,236)(111,237)(112,238)(113,239)(114,240)(115,226)(116,227)(117,228)(118,229)(119,230)(120,231), (1,200,98,149)(2,201,99,150)(3,202,100,136)(4,203,101,137)(5,204,102,138)(6,205,103,139)(7,206,104,140)(8,207,105,141)(9,208,91,142)(10,209,92,143)(11,210,93,144)(12,196,94,145)(13,197,95,146)(14,198,96,147)(15,199,97,148)(16,126,36,170)(17,127,37,171)(18,128,38,172)(19,129,39,173)(20,130,40,174)(21,131,41,175)(22,132,42,176)(23,133,43,177)(24,134,44,178)(25,135,45,179)(26,121,31,180)(27,122,32,166)(28,123,33,167)(29,124,34,168)(30,125,35,169)(46,215,87,113)(47,216,88,114)(48,217,89,115)(49,218,90,116)(50,219,76,117)(51,220,77,118)(52,221,78,119)(53,222,79,120)(54,223,80,106)(55,224,81,107)(56,225,82,108)(57,211,83,109)(58,212,84,110)(59,213,85,111)(60,214,86,112)(61,194,240,165)(62,195,226,151)(63,181,227,152)(64,182,228,153)(65,183,229,154)(66,184,230,155)(67,185,231,156)(68,186,232,157)(69,187,233,158)(70,188,234,159)(71,189,235,160)(72,190,236,161)(73,191,237,162)(74,192,238,163)(75,193,239,164), (1,239)(2,240)(3,226)(4,227)(5,228)(6,229)(7,230)(8,231)(9,232)(10,233)(11,234)(12,235)(13,236)(14,237)(15,238)(16,156)(17,157)(18,158)(19,159)(20,160)(21,161)(22,162)(23,163)(24,164)(25,165)(26,151)(27,152)(28,153)(29,154)(30,155)(31,195)(32,181)(33,182)(34,183)(35,184)(36,185)(37,186)(38,187)(39,188)(40,189)(41,190)(42,191)(43,192)(44,193)(45,194)(46,149)(47,150)(48,136)(49,137)(50,138)(51,139)(52,140)(53,141)(54,142)(55,143)(56,144)(57,145)(58,146)(59,147)(60,148)(61,99)(62,100)(63,101)(64,102)(65,103)(66,104)(67,105)(68,91)(69,92)(70,93)(71,94)(72,95)(73,96)(74,97)(75,98)(76,204)(77,205)(78,206)(79,207)(80,208)(81,209)(82,210)(83,196)(84,197)(85,198)(86,199)(87,200)(88,201)(89,202)(90,203)(106,127)(107,128)(108,129)(109,130)(110,131)(111,132)(112,133)(113,134)(114,135)(115,121)(116,122)(117,123)(118,124)(119,125)(120,126)(166,218)(167,219)(168,220)(169,221)(170,222)(171,223)(172,224)(173,225)(174,211)(175,212)(176,213)(177,214)(178,215)(179,216)(180,217) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165),(166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195),(196,197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225),(226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,178),(2,179),(3,180),(4,166),(5,167),(6,168),(7,169),(8,170),(9,171),(10,172),(11,173),(12,174),(13,175),(14,176),(15,177),(16,36),(17,37),(18,38),(19,39),(20,40),(21,41),(22,42),(23,43),(24,44),(25,45),(26,31),(27,32),(28,33),(29,34),(30,35),(46,193),(47,194),(48,195),(49,181),(50,182),(51,183),(52,184),(53,185),(54,186),(55,187),(56,188),(57,189),(58,190),(59,191),(60,192),(61,240),(62,226),(63,227),(64,228),(65,229),(66,230),(67,231),(68,232),(69,233),(70,234),(71,235),(72,236),(73,237),(74,238),(75,239),(76,153),(77,154),(78,155),(79,156),(80,157),(81,158),(82,159),(83,160),(84,161),(85,162),(86,163),(87,164),(88,165),(89,151),(90,152),(91,127),(92,128),(93,129),(94,130),(95,131),(96,132),(97,133),(98,134),(99,135),(100,121),(101,122),(102,123),(103,124),(104,125),(105,126),(106,223),(107,224),(108,225),(109,211),(110,212),(111,213),(112,214),(113,215),(114,216),(115,217),(116,218),(117,219),(118,220),(119,221),(120,222),(136,202),(137,203),(138,204),(139,205),(140,206),(141,207),(142,208),(143,209),(144,210),(145,196),(146,197),(147,198),(148,199),(149,200),(150,201)], [(1,134),(2,135),(3,121),(4,122),(5,123),(6,124),(7,125),(8,126),(9,127),(10,128),(11,129),(12,130),(13,131),(14,132),(15,133),(16,141),(17,142),(18,143),(19,144),(20,145),(21,146),(22,147),(23,148),(24,149),(25,150),(26,136),(27,137),(28,138),(29,139),(30,140),(31,202),(32,203),(33,204),(34,205),(35,206),(36,207),(37,208),(38,209),(39,210),(40,196),(41,197),(42,198),(43,199),(44,200),(45,201),(46,164),(47,165),(48,151),(49,152),(50,153),(51,154),(52,155),(53,156),(54,157),(55,158),(56,159),(57,160),(58,161),(59,162),(60,163),(61,216),(62,217),(63,218),(64,219),(65,220),(66,221),(67,222),(68,223),(69,224),(70,225),(71,211),(72,212),(73,213),(74,214),(75,215),(76,182),(77,183),(78,184),(79,185),(80,186),(81,187),(82,188),(83,189),(84,190),(85,191),(86,192),(87,193),(88,194),(89,195),(90,181),(91,171),(92,172),(93,173),(94,174),(95,175),(96,176),(97,177),(98,178),(99,179),(100,180),(101,166),(102,167),(103,168),(104,169),(105,170),(106,232),(107,233),(108,234),(109,235),(110,236),(111,237),(112,238),(113,239),(114,240),(115,226),(116,227),(117,228),(118,229),(119,230),(120,231)], [(1,200,98,149),(2,201,99,150),(3,202,100,136),(4,203,101,137),(5,204,102,138),(6,205,103,139),(7,206,104,140),(8,207,105,141),(9,208,91,142),(10,209,92,143),(11,210,93,144),(12,196,94,145),(13,197,95,146),(14,198,96,147),(15,199,97,148),(16,126,36,170),(17,127,37,171),(18,128,38,172),(19,129,39,173),(20,130,40,174),(21,131,41,175),(22,132,42,176),(23,133,43,177),(24,134,44,178),(25,135,45,179),(26,121,31,180),(27,122,32,166),(28,123,33,167),(29,124,34,168),(30,125,35,169),(46,215,87,113),(47,216,88,114),(48,217,89,115),(49,218,90,116),(50,219,76,117),(51,220,77,118),(52,221,78,119),(53,222,79,120),(54,223,80,106),(55,224,81,107),(56,225,82,108),(57,211,83,109),(58,212,84,110),(59,213,85,111),(60,214,86,112),(61,194,240,165),(62,195,226,151),(63,181,227,152),(64,182,228,153),(65,183,229,154),(66,184,230,155),(67,185,231,156),(68,186,232,157),(69,187,233,158),(70,188,234,159),(71,189,235,160),(72,190,236,161),(73,191,237,162),(74,192,238,163),(75,193,239,164)], [(1,239),(2,240),(3,226),(4,227),(5,228),(6,229),(7,230),(8,231),(9,232),(10,233),(11,234),(12,235),(13,236),(14,237),(15,238),(16,156),(17,157),(18,158),(19,159),(20,160),(21,161),(22,162),(23,163),(24,164),(25,165),(26,151),(27,152),(28,153),(29,154),(30,155),(31,195),(32,181),(33,182),(34,183),(35,184),(36,185),(37,186),(38,187),(39,188),(40,189),(41,190),(42,191),(43,192),(44,193),(45,194),(46,149),(47,150),(48,136),(49,137),(50,138),(51,139),(52,140),(53,141),(54,142),(55,143),(56,144),(57,145),(58,146),(59,147),(60,148),(61,99),(62,100),(63,101),(64,102),(65,103),(66,104),(67,105),(68,91),(69,92),(70,93),(71,94),(72,95),(73,96),(74,97),(75,98),(76,204),(77,205),(78,206),(79,207),(80,208),(81,209),(82,210),(83,196),(84,197),(85,198),(86,199),(87,200),(88,201),(89,202),(90,203),(106,127),(107,128),(108,129),(109,130),(110,131),(111,132),(112,133),(113,134),(114,135),(115,121),(116,122),(117,123),(118,124),(119,125),(120,126),(166,218),(167,219),(168,220),(169,221),(170,222),(171,223),(172,224),(173,225),(174,211),(175,212),(176,213),(177,214),(178,215),(179,216),(180,217)]])

210 conjugacy classes

class 1 2A2B2C2D2E2F3A3B4A4B4C4D4E4F4G5A5B5C5D6A···6F6G6H6I6J6K6L10A···10L10M···10T10U10V10W10X12A···12H12I···12N15A···15H20A···20P20Q···20AB30A···30X30Y···30AN30AO···30AV60A···60AF60AG···60BD
order122222233444444455556···666666610···1010···101010101012···1212···1215···1520···2020···2030···3030···3030···3060···6060···60
size111122411222244411111···12222441···12···244442···24···41···12···24···41···12···24···42···24···4

210 irreducible representations

dim1111111111111111111122222222
type++++++
imageC1C2C2C2C2C3C5C6C6C6C6C10C10C10C10C15C30C30C30C30D4C4○D4C3×D4C5×D4C3×C4○D4C5×C4○D4D4×C15C15×C4○D4
kernelC15×C22.D4C15×C22⋊C4C15×C4⋊C4C22×C60D4×C30C5×C22.D4C3×C22.D4C5×C22⋊C4C5×C4⋊C4C22×C20D4×C10C3×C22⋊C4C3×C4⋊C4C22×C12C6×D4C22.D4C22⋊C4C4⋊C4C22×C4C2×D4C2×C30C30C2×C10C2×C6C10C6C22C2
# reps1321124642212844824168824488161632

Matrix representation of C15×C22.D4 in GL4(𝔽61) generated by

42000
04200
00250
00025
,
60000
0100
00600
00060
,
60000
06000
0010
0001
,
05000
11000
00179
002244
,
0100
1000
00484
001913
G:=sub<GL(4,GF(61))| [42,0,0,0,0,42,0,0,0,0,25,0,0,0,0,25],[60,0,0,0,0,1,0,0,0,0,60,0,0,0,0,60],[60,0,0,0,0,60,0,0,0,0,1,0,0,0,0,1],[0,11,0,0,50,0,0,0,0,0,17,22,0,0,9,44],[0,1,0,0,1,0,0,0,0,0,48,19,0,0,4,13] >;

C15×C22.D4 in GAP, Magma, Sage, TeX

C_{15}\times C_2^2.D_4
% in TeX

G:=Group("C15xC2^2.D4");
// GroupNames label

G:=SmallGroup(480,928);
// by ID

G=gap.SmallGroup(480,928);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-5,-2,-2,1709,5126,646]);
// Polycyclic

G:=Group<a,b,c,d,e|a^15=b^2=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e=c*d^-1>;
// generators/relations

׿
×
𝔽